Reversible assembly of stacked membrane nanodiscs with reduced dimensionality and variable periodicity.
نویسندگان
چکیده
We demonstrate the self-organization of quasi-one-dimensional nanostructures with periodic features using nature's primary three building blocks: lipids, DNA, and proteins. The periodicity of these "BioNanoStacks" is controllable through selection of the length of the DNA spacers. We show that BioNanoStacks can be reversibly assembled and disassembled through thermal melting of the DNA duplex, where the melting transition temperature is controllable not just by the DNA sequence and salt concentration, but also by the lipid composition within these superstructures. These novel materials may find applications in fields such as templated nanomaterial assembly, tissue-engineering scaffolds, or therapeutic delivery systems. Well-established techniques for chemical modification of biomolecules will also provide a broad platform for adaption and remodeling of these structures to provide optimal features for the required application.
منابع مشابه
Microfluidic platform for efficient Nanodisc assembly, membrane protein incorporation, and purification.
The characterization of integral membrane proteins presents numerous analytical challenges on account of their poor activity under non-native conditions, limited solubility in aqueous solutions, and low expression in most cell culture systems. Nanodiscs are synthetic model membrane constructs that offer many advantages for studying membrane protein function by offering a native-like phospholipi...
متن کاملA Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters
Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...
متن کاملConformational transitions in the membrane scaffold protein of phospholipid bilayer nanodiscs.
Phospholipid bilayer nanodiscs are model membrane systems that provide an environment where membrane proteins are highly stable and monodisperse without the use of detergents or liposomes. Nanodiscs consist of a discoidal phospholipid bilayer encircled by two copies of an amphipathic alpha helical membrane scaffold protein, which is modeled from apolipoprotein A-1. Hydrogen exchange mass spectr...
متن کاملChapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs.
Self-assembled phospholipid bilayer Nanodiscs have become an important and versatile tool among model membrane systems to functionally reconstitute membrane proteins. Nanodiscs consist of lipid domains encased within an engineered derivative of apolipoprotein A-1 scaffold proteins, which can be tailored to yield homogeneous preparations of disks with different diameters, and with epitope tags f...
متن کاملOptimization of the design and preparation of nanoscale phospholipid bilayers for its application to solution NMR.
Despite arduous efforts and recent technological developments structural investigation of integral membrane proteins remains a challenge. The primary deterrents include difficulties with their expression, low inherent solubility, and problems associated with existing membrane mimicking systems. A relatively new class of membrane mimetics, nanodiscs, is emerging as a promising alternative. Altho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 135 9 شماره
صفحات -
تاریخ انتشار 2013